Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 165: 104038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952902

RESUMO

Functional annotation is a critical step in the analysis of genomic data, as it provides insight into the function of individual genes and the pathways in which they participate. Currently, there is no consensus on the best computational approach for assigning functional annotation. This study compares three functional annotation methods (BLAST, eggNOG-Mapper, and InterProScan) in their ability to assign Gene Ontology terms in two species of Insecta with differing levels of annotation, Bombyx mori and Manduca sexta. The methods were compared for their annotation coverage, number of term assignments, term agreement and non-overlapping terms. Here we show that there are large discrepancies in gene ontology term assignment among the three computational methods, which could lead to confounding interpretations of data and non-comparable results. This study provide insight into the strengths and weaknesses of each computational method and highlight the need for more standardized methods of functional annotation.


Assuntos
Bombyx , Lepidópteros , Manduca , Animais , Lepidópteros/genética , Transcriptoma , Manduca/genética , Bombyx/genética , Genoma , Anotação de Sequência Molecular
2.
Elife ; 122023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113081

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Assuntos
Neurônios Motores , Primatas , Ratos , Camundongos , Animais , Neurônios Motores/fisiologia , Eletrodos , Fibras Musculares Esqueléticas
3.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36865176

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...